

FREE VIBRATIONS OF CIRCULAR PLATES OF VARYING THICKNESS PARTIALLY EMBEDDED IN AN ELASTIC FOUNDATION

V. TOPALIÁN, H. A. LARRONDO AND D. R. ÁVALOS

Department of Physics, School of Engineering, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina

AND

P. A. A. LAURA Institute of Applied Mechanics (CONICET)

AND

Department of Engineering, Universidad Nacional del Sur, 8000 Bahía Blanca, Argentina

(Received 3 January 1995, and in final form 20 November 1995)

1. INTRODUCTION

The present study was originated by the dynamic analysis of the foundation of machinery partially embedded in a Winkler type medium (see Figure 1), and deals with the determination of the lower natural frequencies of transverse vibration corresponding to symmetric and antisymmetric modes. The classical Rayleigh–Ritz method using a polynomial approximation is employed and classical plate theory is applied to describe the dynamic behavior of the plate.

A review of the available literature shows that several cases with circular symmetry have been investigated: the case of stepped annular plates resting on elastic foundations has been studied recently by Wang [1]; the case of axisymmetric vibrations of circular plates with variable thickness (linear as well as parabolic) resting on an elastic foundation of Winkler type has been discussed by Gupta *et al.* [2], for both clamped and simply supported plates; and the case of plates with stepped thickness on elastic foundations have been investigated by Ju *et al.* [3]. On the other hand, the general case of symmetric and antisymmetric modes, for circular plates with partially flat and partially linear thickness, partial Winkler type foundation and general boundary conditions, seems not to have been reported as yet.

2. SOLUTION BY MEANS OF THE RAYLEIGH-RITZ METHOD

In the case of normal modes of vibration of the vibrating system shown in Figure 1, one takes

$$w(\bar{r}, t) = W(\bar{r}) e^{i\omega t}$$
(1)

for the plate transverse displacement, and then introduces the following approximation, convenient in the case of both axisymmetric and antisymmetric modes of vibration:

$$W(\vec{r}) \simeq W_a(\vec{r}) = \cos k\theta \sum_{j=0}^J \sum_{i=0}^2 A_j C_{ij} R^{\gamma_i + j + k}.$$
 (2)

$$C_{ij} = \{1, \alpha_j, \beta_j\}, \quad k = 0, 1, 2, \dots \text{ and } \gamma_i = \{0, 2, 4\},$$
 (3)

 $0022 - 460 X/97/160125 + 09 \ \$25.00/0/sv950804$

Figure 1. The system under study.

where the α_i 's and the β_i 's are determined by substituting each co-ordinate function into the governing boundary conditions.

If use is made of the dimensionless variable $r = \bar{r}/a$, these boundary conditions can be written in the form [1]

$$\Phi_a \frac{\partial W}{\partial r}\Big|_{r=1} = -\left[\frac{\partial^2 W}{\partial r^2} + \mu_1 \left(\frac{1}{r}\frac{\partial W}{\partial r} + \frac{1}{r^2}\frac{\partial^2 W}{\partial \theta^2}\right)\right]_{r=1},$$
(4a)

$$K_{a}W\Big|_{r=1} = +\left[\frac{\partial(\Delta W)}{\partial r} + \frac{(1-\mu_{1})}{r}\frac{\partial}{\partial\theta}\left(+ \frac{1}{r}\frac{\partial^{2}W}{\partial r\partial\theta} - \frac{1}{r^{2}}\frac{\partial W}{\partial\theta}\right)\right]_{r=1},$$
(4b)

where Δ is the Laplace operator, Φ_a is the non-dimensional flexibility coefficient of the rotational boundary spring and K_a is the non-dimensional translational spring constant, given by $\Phi_a = a/\phi_a D_1$ and $K_a = k_a a^3/D_1$, and, as usual,

$$D_1 = E_1 h_1^3 / 12(1 - \mu_1^2).$$
(5)

Substituting expressions (3) in equations (4) one obtains

$$\sum_{i=0}^{2} C_{ij}((\gamma_i + j + k)[\gamma_i + j + k - 1 + \mu_1(1 - k^2)]\Phi_a + 1) = 0,$$
 (6a)

$$\sum_{i=0}^{2} C_{ij}((\gamma_i + j + k - 2)[(\gamma_i + j + k)^2 k^2] - (1 - \mu_1)k^2(\gamma_i + j + k - 1) - K_a) = 0, \quad (6b)$$

where j = 0, 1, 2, ..., J.

The appropriate functional of the problem is

$$J(W) = U_p + U_b + U_f - T_p,$$
(7)

where

$$U_{p} = \pi D_{1} \int_{0}^{1} \left[(\Delta W)^{2} + 2(1 - \mu_{1}) \left(\frac{1}{r} \frac{\partial^{2} W}{\partial r \partial \theta} - \frac{1}{r^{2}} \frac{\partial W}{\partial \theta} \right)^{2} - 2(1 - \mu_{1}) \frac{\partial^{2} W}{\partial r^{2}} \left(\frac{1}{r^{2}} \frac{\partial^{2} W}{\partial \theta^{2}} + \frac{1}{r} \frac{\partial W}{\partial r} \right)^{2} \right] r dr$$

$$+ \pi D_{2} \int_{\eta_{1}}^{\eta_{2}} \left[(\Delta W)^{2} + 2(1 - \mu_{2}) \left(\frac{1}{r} \frac{\partial^{2} W}{\partial r \partial \theta} - \frac{1}{r^{2}} \frac{\partial W}{\partial \theta} \right)^{2} - 2(1 - \mu_{2}) \frac{\partial^{2} W}{\partial r^{2}} \left(\frac{1}{r^{2}} \frac{\partial^{2} W}{\partial \theta^{2}} + \frac{1}{r} \frac{\partial W}{\partial r} \right)^{2} \right] r dr$$

$$+ \pi D_{3} \int_{\eta_{2}}^{1} ((S_{a}(1 - r) + 1)^{3} - 1) \left[(\Delta W)^{2} + 2(1 - \mu_{2}) \left(\frac{1}{r} \frac{\partial^{2} W}{\partial r \partial \theta} - \frac{1}{r^{2}} \frac{\partial W}{\partial \theta} \right)^{2} - 2(1 - \mu_{2}) \frac{\partial^{2} W}{\partial r^{2}} \left(\frac{1}{r^{2}} \frac{\partial^{2} W}{\partial \theta^{2}} + \frac{1}{r} \frac{\partial W}{\partial r} \right)^{2} \right] r dr, \qquad (8a)$$

TABLE 1

The fundamental axisymmetric frequency coefficient $\Omega = (\omega a^2 h_2/h_1) \sqrt{\rho_1 h_1/D_1}$ for a circular plate with linearly varying thickness; comparison with reference [5]; $\mu_1 = \mu_2 = 0.25$, $K_f = 0$, $a/(\phi_a D_1) = 0$, $\eta_1 = \eta_2 = 0$

		1(1)	, .,	. 12			
				$k_a a^3 h$	${}_{1}^{3}/D_{1}h_{2}^{3}$		
h_2/h_1		1	8	32	128	1024	œ
1	Present study Reference [2]	1·3724 1·372	3·2111 3·211	4·2856 4·285	4·7048 4·704	4·8414 4·840	4·8602 4·860
1.5	Present study Reference [2]	1.5097	3.0827	3.6878	3.8829	3.9431	3·9516 3·952
5/3	Present study Reference [2]	1·5384 1·538	3·0261 3·026	3·5470 3·548	3·7106 3·710	3·7599 3·760	3·7666 3·7667
2.329	Present study Reference [2]	1.6065	2.8190	3.1552	3.2506	3·2751	3·2782 3·277
2.5	Present study Reference [2]	1·6162 1·623	2·7740 2·785	3·0835 3·078	3·1676 3·162	3·1886 3·187	3·1913 3·191
5	Present study Reference [2]	1·6347 1·952	2·4079 2·481	2·5064 2·550	2·5267 2·567	2·5329 2·5372	2·5329 2·573

$$U_{b} = \pi D_{1} \left[\Phi_{a} \left(\frac{\partial W}{\partial r} \right)_{r=1}^{2} + K_{a} (W^{2})_{r=1} \right], \qquad U_{f} = \pi K_{f} \int_{\eta_{3}}^{\eta_{4}} W^{2} r \, \mathrm{d}r \qquad (8b, 9)$$

are the potential energies corresponding to the plate strain, the plate boundary restraints, and the foundation elastic deformation respectively, while

$$T_{p} = \pi D_{1} \Omega^{2} \left[\int_{0}^{1} W^{2} r \, \mathrm{d}r + (h-1) \frac{\rho_{2}}{\rho_{1}} \int_{\eta_{1}}^{\eta_{2}} W^{2} r \, \mathrm{d}r + S_{a} \frac{\rho_{2}}{\rho_{1}} \int_{\eta_{2}}^{1} W^{2} r (1-r) \, \mathrm{d}r \right]$$
(10)

is the kinetic energy of the plate. Here $\Omega^2 = \rho_1 h_1 a^4 \omega^2 / D_1$, $h = h_2 / h_1$, $\eta_1 = b/a$, $\eta_2 = c/a$, $\eta_3 = e/a$ and $\eta_4 = f/a$ are the frequency coefficient, the dimensionless height and radius of step, and the dimensionless radius of inner and outer borders of the foundation respectively. Also $S_a = (h_2 - h_1)/(a - c)$, $K_f = k_f a^4 / D_1$, $D_2 = E_2 (h_2^3 - h_1^3)/12(1 - \mu_2^2)$ and $D_3 = E_2 h_1^3/12(1 - \mu_2^2)$.

Table 2

A comparison of frequencies $\{\Omega h_2/(\sqrt{12}h)\}\$ for the first three symmetric modes and for two different geometrical configurations

Configuration (a): $K_a = \infty$, $\Phi_a = 0$, $\eta_1 = \eta_3 = 0$, $\eta_2 = \eta_4 = 1$, $\mu_1 = \mu_2 = 0.3$, $h_2 = 0.1$, $K_f = 0$ (without foundation)

		$-h^{-1}$	$\alpha = 1$				
0.5	0.3	0.1	-0.1	-0.3	-0.5		Mode
88 0.1025	0.1188	0.1346	0.1503	0.1659	0.1817	Present study	Ω_{00}
38 0·1024	0.1188	0.1346	0.1502	0.1659	0.1817	Reference [2]	
88 0.1025	0.1188	0.1346	0.1503	0.1659	0.1816	Reference [6]	
41 0.6136	0.7141	0.8107	0.9050	0.9979	1.0906	Present study	Ω_{01}
43 0.6143	0.7143	0.8106	0.9069	1.0047	1.1046	Reference [2]	
38 0·6132	0.7138	0.8105	0.9049	0.9977	1.0895	Reference [6]	
29 1.5440	1.7929	2.0283	2.2583	2.4876	2.7115	Present study	Ω_{02}
50 1.5587	1.8260	2.2512	2.6392	3.0419	3.4547	Reference [2]	
19 1.5418	1.7919	2.0268	2.2524	2.4686	2.6771	Reference [6]	
38 29 50 19	0.7138 1.7929 1.8260 1.7919	0.8105 2.0283 2.2512 2.0268	0·9049 2·2583 2·6392 2·2524	0·9977 2·4876 3·0419 2·4686	1.0895 2.7115 3.4547 2.6771	Reference [6] Present study Reference [2] Reference [6]	Ω_{02}

Configuration (b): $K_a = \infty$, $\Phi_a = \infty$, $\eta_1 = \eta_3 = 0$, $\eta_2 = \eta_4 = 1$, $\mu_1 = \mu_2 = 0.3$, $h_2 = 0.1$, $K_f h_2^3 / 12a^3h^3(1-\mu^2) = 0.01$ (with foundation)

				$\alpha = 1$	$-h^{-1}$		
Mode		-0.5	-0.3	-0.1	0.1	0.3	0.5
Ω_{00}	Present study	0.4981	0.4649	0.4351	0.4099	0.3910	0.3802
	Reference [2]	0.4986	0.4649	0.4350	0.4099	0.3910	0.3801
	Reference [6]	0.4983	0.4649	0.4351	0.4099	0.3910	0.3802
$arOmega_{01}$	Present study	1.5051	1.3804	1.2516	1.1224	0.9927	0.8637
	Reference [2]	1.5500	1.4024	1.2601	1.1238	0.9929	0.8657
	Reference [6]	1.5079	1.3804	1.2512	1.1224	0.9926	0.8636
Ω_{02}	Present study	3.3419	3.0230	2.7354	2.4499	2.1607	1.8570
	Reference [2]	4.6432	4.0459	3.4624	2.8998	2.3714	1.9032
	Reference [6]	3.2584	3.0089	2.7284	2.4476	2.1594	1.8546

128

In accordance with the Ritz method, one requires that

$$\partial J[W_a]/\partial A_j = 0, \qquad j = 0, 1, 2, \dots, J,$$
(11)

and from the non-triviality conditions one obtains the frequency determinant.

TABLE 3

The natural frequency coefficients for symmetric and antisymmetric modes as a function of the foundation constant and geometrical configuration; $K_a = 0$, $\Phi_a = 0$, $\eta_1 = \eta_3 = 0$

			η_2	$=\eta_{4}=0$	·25	η_2	$=\eta_{4}=0$	·5	η_2	$=\eta_{4}=0$	·75
h	K_{f}	k	Ω_{k0}	Ω_{k1}	Ω_{k2}	Ω_{k0}	Ω_{k1}	Ω_{k2}	$arOmega_{k0}$	Ω_{k1}	Ω_{k2}
1.0	0	0 1 2	0.0000 0.0000 5.3583	9.0036 20.475 35.260	38·473 59·874 84·384	0.0000 0.0000 5.3583	9.0036 20.475 35.260	38·473 59·874 84·384	0.0000 0.0000 5.3583	9.0036 20.475 35.260	38·473 59·874 84·384
	10	0 1 2	0·7794 0·1974 5·3587	9·1218 20·488 35·262	38·518 59·890 84·388	1·5345 0·7862 5·3774	9·2908 20·584 35·304	38·530 59·915 84·415	2·3264 1·7687 5·5475	9·3206 20·646 35·365	38·573 59·937 84·427
	100	0 1 2	2·1901 0·6186 5·3616	10·155 20·611 35·277	38·929 60·038 84·425	3·8351 2·3713 5·5416	11·900 21·549 35·690	39·049 60·290 84·696	6·2002 5·3254 6·9671	12·422 22·195 36·303	39·466 60·503 84·815
	1000	0 1 2	3·7758 1·7977 5·3897	16·701 21·721 35·420	43·297 61·479 84·788	5·7607 5·4352 6·6762	26·490 29·134 39·123	44·862 64·250 87·545	12·141 12·370 13·117	31·813 35·624 45·123	47·794 65·961 88·614
1.5	0	0 1 2	0.0000 0.0000 7.3441	12·618 27·134 45·078	50·825 78·249 108·66	0.0000 0.0000 7.8549	13·509 29·603 48·647	54·657 83·192 115·94	0.0000 0.0000 8.1522	13·937 31·442 53·108	58·843 90·394 125·54
	10	0 1 2	0·7128 0·1856 7·3443	12·617 27·141 45·078	50·845 78·256 108·67	1·3796 0·7224 7·8657	13·628 29·650 48·666	54·681 83·211 115·95	2·0058 1·5548 8·2514	14·068 31·514 53·153	58·885 90·421 125·56
	100	0 1 2	2·1633 0·5850 7·3460	13·153 27·196 45·085	51.028 78.317 108.68	4·0482 2·2503 7·9608	14·746 30·076 48·833	54·899 83·380 116·08	6·0745 4·8526 9·0855	15·306 32·164 53·556	59·269 90·668 125·73
	1000	0 1 2	4·9606 1·7938 7·3626	17·443 27·732 45·146	52·914 78·923 108·82	7·8573 6·2375 8·7811	24·788 34·047 50·445	57·182 85·114 117·37	13·984 13·625 14·527	27·519 38·659 57·552	63·046 93·111 127·41
2.0	0	0 1 2	0.0000 0.0000 9.5799	16·439 33·797 54·806	62·850 96·020 131·67	0.0000 0.0000 10.637	18·335 39·006 62·087	70·679 106·48 146·96	0.0000 0.0000 11.120	19·082 42·859 71·738	79·799 121·86 167·71
	10	0 1 2	0·6581 0·1756 9·5800	16·468 33·801 54·806	62·862 96·024 131·67	1·2525 0·6707 10·644	18·399 39·032 62·097	70·692 106·49 146·97	1·7793 1·4010 11·181	19·153 42·898 71·763	79·822 121·87 167·72
	100	0 1 2	2·0442 0·5545 9·5811	16·735 33·832 54·809	62·963 96·056 131·68	3·8453 2·1075 10·705	18·983 39·265 62·189	70·811 106·59 147·04	5·5416 4·4084 11·708	19·808 43·249 71·982	80·031 122·01 167·81
	1000	0 1 2	5·4882 1·7286 9·5918	19·358 34·139 54·843	63·998 96·383 131·75	9·3207 6·2763 11·274	25·154 41·534 63·088	72·023 107·57 147·77	14·939 13·278 15·875	26·954 46·797 74·176	82·116 123·37 168·75

3. NUMERICAL RESULTS

In Tables 1 and 2 is depicted a comparison with values available in the literature. Very good agreement is observed. The new results for the case under study are presented in Tables 3–6. Calculations have been made with $\mu_1 = \mu_2 = 0.3$ and J = 5. Each table corresponds to a different boundary condition, and several geometrical configurations and elastic constants of the foundation have been considered. The first nine

TABLE 4

				1	4s Table	e 3, but 1	$K_a = \infty$				
			η_2	$=\eta_{4}=0$	·25	η_2	$=\eta_{4}=0$	•5	η_2	$=\eta_{4}=0$	·75
h	K_{f}	k	Ω_{k0}	Ω_{k1}	Ω_{k2}	Ω_{k0}	Ω_{k1}	Ω_{k2}	$\overline{\Omega_{_{k0}}}$	Ω_{k1}	Ω_{k2}
1.0	0	0 1 2	4·9352 13·898 25·613	29·723 48·485 70·121	74·257 102·92 134·74	4·9352 13·898 25·613	29·723 48·485 70·121	74·257 102·92 134·74	4·9352 13·898 25·613	29·723 48·485 70·121	74·257 102·92 134·74
	10	0 1 2	5·1347 13·911 25·614	29·781 48·502 70·124	74·276 102·94 134·74	5·5334 14·029 25·653	29·801 48·541 70·159	74·293 102·95 134·75	5.8072 14.205 25.765	29·854 48·559 70·169	74·304 102·96 134·76
	100	0 1 2	6.6084 14.025 25.625	30·302 48·648 70·156	74·445 103·06 134·79	9·2284 15·133 26·001	30·516 49·047 70·501	74·617 103·15 134·89	10·855 16·706 27·090	31·007 49·221 70·604	74·727 103·26 135·00
	1000	0 1 2	12·589 15·021 25·725	35·529 50·058 70·463	76·271 104·27 135·27	21·335 22·164 28·925	39·032 54·318 73·910	77·816 105·18 136·31	30·577 32·102 37·634	40·844 55·484 74·876	78·894 106·32 137·36
1.5	0	0 1 2	6·3684 17·273 31·447	38·057 62·078 88·783	95.630 133.30 172.42	6·7797 18·584 33·273	40·224 65·511 94·468	101·42 139·95 181·85	7·1524 20·069 36·245	43·413 69·943 100·16	106·75 146·88 191·75
	10	0 1 2	6·4744 17·279 31·448	38·084 62·085 88·784	95.639 133.30 172.43	7·0827 18·646 33·291	40·259 65·537 94·485	101·44 139·96 181·85	7.5775 20.211 36.315	43·472 69·976 100·18	106·77 146·89 191·76
	100	0 1 2	7·3464 17·335 31·452	38·324 62·147 88·796	95·724 133·36 172·45	9·3557 19·188 33·449	40·580 65·775 94·641	101·58 140·05 181·92	10·665 21·446 36·940	43·996 70·271 100·37	106·96 147·03 191·87
	1000	0 1 2	12·518 17·871 31·497	40·781 62·760 88·916	96·596 133·93 172·65	20·393 23·631 34·934	44·139 68·199 96·193	103·04 140·98 182·63	25·937 31·140 42·640	48·933 73·172 102·31	108·84 148·42 192·97
2.0	0	0 1 2	7·7531 20·382 37·035	46·007 74·885 106·29	115·79 161·23 208·25	8.6020 22.947 40.468	50·007 81·742 117·67	127·70 174·83 226·78	9·3923 26·179 46·608	56·583 90·569 128·85	137·53 189·73 247·74
	10	0 1 2	7·8187 20·385 37·035	46·022 74·888 106·29	115·80 161·23 208·26	8·7828 22·983 40·478	50·028 81·757 117·68	127·71 174·83 226·79	9.6392 26.261 46.649	56.616 90.588 128.86	137·54 189·74 247·75
	100	0 1 2	8·3817 20·419 37·038	46·160 74·922 106·30	115·85 161·26 208·27	10·259 23·302 40·568	50·213 81·896 117·77	127·79 174·89 226·83	11.628 26.982 47.008	56·913 90·754 128·97	137·65 189·82 247·81
	1000	0 1 2	12·437 20·750 37·063	47·564 75·258 106·36	116·36 161·58 208·37	19·247 26·179 41·439	52·167 83·296 118·65	128.62 175.40 227.25	23·596 33·326 50·451	59·804 92·403 130·08	138·71 190·62 248·45

eigenvalues are reported for each case. Both the symmetric (k = 0) and the antisymmetric (k = 1 and k = 2) modes are reported. One can conclude that, in view of the good agreement observed and the simplicity, the approximate analytical solution presented herein is quite convenient, simple and accurate for the analysis of this class of systems.

				E	<i>As Table</i>	4, <i>but</i>	$\Phi_a = \infty$				
			η_2	$= \eta_4 = 0$	·25	η_2	$=\eta_4=0$	5	η_2	$=\eta_{4}=0$	·25
h	K_{f}	k	Ω_{k0}	$arOmega_{k1}$	Ω_{k2}	Ω_{k0}	$arOmega_{k1}$	Ω_{k2}	Ω_{k0}	$arOmega_{k1}$	Ω_{k2}
1.0	0	0 1 2	10·216 21·260 34·877	39·771 60·847 84·589	89·204 120·60 155·34	10·216 21·260 34·877	39·771 60·847 84·589	89·204 120·60 155·34	10·216 21·260 34·877	39·771 60·847 84·589	89·204 120·60 155·34
	10	0 1 2	10·360 21·275 34·879	39·813 60·863 84·593	89·218 120·61 155·35	10·594 21·386 34·924	39·825 60·886 84·620	89·234 120·62 155·35	10.688 21.485 35.008	39·884 60·915 84·634	89·246 120·63 155·36
	100	0 1 2	11·546 21·410 34·894	40·192 61·006 84·630	89·345 120·72 155·40	13·507 22·472 35·345	40·311 61·245 84·898	89·508 120·80 155·47	14·251 23·407 36·165	40·884 61·525 85·042	89.630 120.89 155.56
	1000	0 1 2	18·327 22·613 35·044	44·236 62·409 84·992	90·699 121·76 155·89	28·254 30·561 39·028	45·660 65·036 87·729	92·260 122·58 156·67	33·021 37·519 46·117	49·756 67·301 89·009	93·378 123·48 157·48
1.5	0	0 1 2	11·573 25·221 41·866	49·459 76·562 106·07	113·41 154·18 196·21	11·922 26·521 43·982	51·745 79·965 111·90	119·04 161·20 206·20	12·505 27·570 46·321	53·830 83·705 117·04	123·88 167·98 216·01
	10	0 1 2	11·652 25·227 41·867	49·479 76·569 106·07	113·42 154·18 196·21	12·130 26·581 43·913	51·771 79·985 111·92	119·05 161·21 206·20	12·764 27·683 46·384	53.883 83.737 117.06	123·90 167·99 216·02
	100	0 1 1	12·333 25·290 41·873	49·664 76·631 106·08	113·49 154·23 196·23	13·856 27·109 44·097	52.005 80.166 112.05	119·18 161·29 206·26	14·888 28·681 46·949	54·362 84·018 117·24	124·07 168·12 216·11
	1000	0 1 2	17·323 25·889 41·935	51·579 77·241 106·22	114·18 154·77 196·44	24·870 31·728 45·849	54·463 82·013 113·41	120·50 162·15 206·87	28·432 37·205 52·249	58·925 86·775 119·07	125·80 169·32 217·04
2.0	0	0 1 2	12·930 28·800 48·344	58·461 91·094 125·85	135·84 185·60 235·87	13·646 31·413 52·134	62·674 97·833 137·57	147·36 199·59 255·28	14·557 33·738 57·380	67·576 106·04 148·07	156·69 214·23 275·47
	10	0 1 2	12·980 28·804 48·344	58·473 91·098 125·85	135·85 185·60 235·87	13·779 31·448 52·146	62·689 97·845 137·58	147·37 199·59 255·29	14·723 33·806 57·418	67·607 106·06 148·08	156·70 214·24 275·48
	100	0 1 2	13·424 28·840 48·348	58·584 91·131 125·85	135·89 185·63 235·88	14·917 31·758 52·248	62·829 97·956 137·66	147·45 199·64 255·32	16·141 34·416 57·751	67·886 106·22 148·18	156·80 214·31 275·53
	1000	0 1 2	17·076 29·196 48·381	59·712 91·467 125·93	136·31 185·94 236·00	23·253 34·646 53·243	64·271 99·072 138·45	148·21 200·12 255·68	26·420 39·994 60·977	70.608 107.81 149.22	157·79 215·00 276·08

TABLE 5

			$\eta_2 =$	$= \eta 4 = 0$)·25	η_2 :	$= \eta 4 = 0$)•5	$\eta_2 = \eta 4 = 0.75$			
h	K_{f}	k	Ω_{k0}	Ω_{k1}	Ω_{k2}	Ω_{k0}	Ω_{k1}	Ω_{k2}	Ω_{k0}	Ω_{k1}	Ω_{k2}	
1.0	0	0	6.1693	16.660	46.336	6.1693	16.660	46.336	6.1693	16.660	46.336	
		1	9.5080	27.836	68·215	9.5080	27.836	68·215	9.5080	27.836	68·215	
		2	13.495	42.629	93·019	13.495	42.629	93·019	13.495	42.629	93·019	
	10	0	6.2882	16.723	46.369	6.5455	16.777	46.380	6.7825	16.795	46.415	
		1	9.5141	27.849	68·230	9.5837	27.922	68.247	9.7674	27.945	68·773	
		2	13.496	42.631	93.024	13.512	42.672	93.046	13.616	42.711	93.060	
	100	0	7.1812	17.300	46.672	8.9150	17.964	46.782	10.617	18.079	47.133	
		1	9.5678	27.969	68.369	10.196	28.696	68.544	11.753	28.950	68.733	
		2	13.499	42.648	93.062	13.600	43.058	93.284	14.624	43.450	93.422	
	1000	0	10.112	22.658	49.995	13.307	30.849	51.001	20.037	33.247	54.166	
	1000	ĩ	10.015	29.080	69.740	13.142	35.729	71.669	20.007	39.434	73.688	
		2	13.530	42.819	93.442	14.781	46.609	95·727	20.796	50.829	96·984	
1 5	0	0	5 00 45	10.465	50 ((1	5 0 1 0 4	10.000	(0.404	5 0102	20.174	65 1 50	
1.2	0	0	5.9945	19.465	58.661	5.9194	19.982	62.424	5.8183	20.174	65.172	
		1	9.44/6	34.1/0	86.845	9.3806	36.199	91.461	9.2061	31.275	9/.414	
		2	14.626	52.489	117.83	14.790	55.832	124.78	14./13	59.157	133.35	
	10	0	6.0678	19.499	58.677	6.1554	20.051	62.445	6.2274	20.253	65·210	
		1	9.4512	34.176	86.852	9.4250	36.240	91.477	9.3713	37.332	97.440	
		2	14.626	52.489	117.84	14.779	55.851	124.79	14.783	59.196	133.37	
	100	0	6.6658	19.811	58.825	7.8586	20.699	62.630	9.0386	20.989	65.553	
		1	9.4828	34.231	86.910	9.8060	36.612	91.620	10.720	37.845	97.673	
		2	14.628	52.496	117.85	14.880	56.020	124.91	15.388	59.550	133.53	
	1000	0	0 7005	22.095	(0.255	12 226	20 225	(1 522	10.026	20 (79	(9.057	
	1000	1	9.7003	22.983	00.333	13.330	28.333	04.323	19.030	29.078	00.002	
		1	9.7759	34·/38	8/.490	12.419	40.21/	93.085	18.433	43.132	99.983	
		2	14.044	32.300	118.00	13.009	37.030	120.07	20.077	03.094	133.10	
2.0	0	0	5.7985	22.551	70.768	5.6531	23.788	78.594	5.4586	24.032	85.085	
		1	9.2950	40.472	104.66	9.1263	44.991	114.84	8.8193	47.716	128.67	
		2	15.990	62·087	141.04	16.414	68.958	155.89	16.292	76.919	175.57	
	10	0	5 9 5 2 9	22 572	70 770	5 0200	22.022	70 (0(5 77(0)	24.005	05 107	
	10	1	3.8320	22.373	104 (7	3·8280	23.833	/8.000	3·//00	24.083	83.10/	
		1	9.29/6	40.4/5	104.07	9.1390	45.015	114.85	8.9458	4/./50	128.69	
		2	15.990	62.087	141.04	16.420	68.969	155.90	16.339	/6.942	1/5.28	
	100	0	6.3030	22.769	70.865	7.1675	24.245	78.711	8.0557	24.565	85.303	
		ĭ	9.3206	40.506	104.70	9.4452	45.229	114.93	10.004	48.055	128.82	
		2	15.991	62.091	141.05	16.473	69.061	155.97	16.775	77.145	175.68	
	1000	•	0 1000	24 777	71 750	12 000	20.044	70 702	17.004	20.002	07.040	
	1000	0	9.1232	24.777	/1./50	13.008	28.944	115.00	1/.894	29.882	8/-262	
		1	9.3419	40.809	103.01	11.099	4/.342	115.80	10.907	31·13/	130.13	
		2	10.001	n2.128	141.12	16.982	09.9/4	100.00	20.321	/9.182	1/6.39	

ACKNOWLEDGMENT

The present study has been sponsored by CONICET Research and Development Program (PID BID 107/92).

REFERENCES

- 1. J. WANG 1992 *Journal of Sound and Vibration* **159**, 175–181. Free vibration of stepped circular plates on elastic foundations.
- 2. U. S. GUPTA, R. LAL and S. K. JAIN 1990 *Journal of Sound and Vibration* 139, 503–513. Effect of elastic foundation on axisymmetric vibrations of polar orthotropic circular plates of variable thickness.
- 3. F. JU, H. P. LEE and K. H. LEE 1995 *Journal of Sound and Vibration* 183, 533–545. Free vibration of plates with stepped variations in thickness on non-homogeneous elastic foundations.
- 4. A. W. LEISSA 1969 Vibration of Plates, NASA SP160. Washington, DC: U.S. Government Printing Office.
- 5. P. A. A. LAURA, C. FILIPICH and R. D. SANTOS 1977 *Journal of Sound and Vibration* **52**, 243–251. Static and dynamic behavior of circular plates of variable thickness elastically restrained along the edges.
- 6. R. LAL 1979 Ph.D. Thesis, University of Roorkee. Vibrations of elastic plates of variable thickness.